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mCounting Principles: The Product
Rule

The Product Rule: A procedure can be broken down
into a sequence of two tasks. There are n; ways to do
the first task and n, ways to do the second task. Then
there are n;-n, ways to do the procedure.

Example: How many bit strings of length seven are
there?

Solution: Since each of the seven bits is eithera 0 or a
1, the answer is 27 = 128.
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The Product Rule

Example: How many different license plates can be
made if each plate contains a sequence of three
uppercase English letters followed by three digits?

Solution: By the product rule,

there are 26 -26-26-10-10-10=17,576,000
different possible license plates.

26 choices 10 choices
for each for each
letter digit
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Counting Functions

Counting Functions: How many functions are there from a set
with m elements to a set with n elements?

Solution: Since a function represents a choice of one of the n
elements of the codomain for each of the m elements in the
domain, the product rule tells us that therearen-n--- n=n™
such functions.

Counting One-to-One Functions: How many one-to-one
functions are there from a set with m elements to one with n
elements?

Solution: Suppose the elements in the domain are

ai, ..., 4,,. There are n ways to choose the value of a, and n—1
ways to choose a,, etc. The product rule tells us that there are
n(n—1) (n—2)--(n—m +1) such functions.
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Telephone Numbering Plan

Example: The North American numbering plan (NANP) specifies that a telephone
number consists of 10 digits, consisting of a three-digit area code, a three-digit office
code, and a four-digit station code. There are some restrictions on the digits.

e Let X denote a digit from 0 through 9.

e Let N denote a digit from 2 through 9.

e Let Ydenote a digit thatis 0 or 1.

e Intheold plan (in use in the 1960s) the format was NYX-NNX-XXX.

* In the new plan, the format is NXX-NXX-XXX.
Hlow many different telephone numbers are possible under the old plan and the new
plan?

Solution: Use the Product Rule.

e Thereare 8:2:10 = 160 area codes with the format NYX.

e Thereare 8:10-10 = 800 area codes with the format NXX.

e There are 8 -8 :10 = 640 office codes with the format NNX.

e Thereare 10:10:10:10 = 10,000 station codes with the format XXXX.
Number of old plan telephone numbers: 160 -640 10,000 = 1,024,000,000.

Number of new plan telephone numbers: 800 -800 -10,000 = 6,400,000,000.
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Counting Subsets of a Finite Set

Counting Subsets of a Finite Set: Use the product rule to
show that the number of different subsets of a finite set S is

2181, (In Section 5.1, mathematical induction was used
to prove this same result.)

Solution: When the elements of S are listed in an
arbitrary order, there is a one-to-one correspondence
between subsets of S and bit strings of length |S|. When
the ith element is in the subset, the bit string has a 1 in the
ith position and a 0 otherwise.

By the product rule, there are 2/5/ such bit strings, and
therefore 25! subsets.
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Product Rule in Terms of Sets

IfAy, A, ..., A, are finite sets, then the number of
elements in the Cartesian product of these sets is the
product of the number of elements of each set.

The task of choosing an element in the Cartesian
product A; X A, X - X A, is done by choosing an
element in A, an element in A, , ..., and an element
inA,_.

By the product rule, it follows that:
[A1 XAy X X Ay, |= [Aq] * |Az] - o - |An.
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Basic Counting Principles: The Sum Rule

The Sum Rule: If a task can be done either in one of n;

ways or in one of n, ways to do the second task, where
none of the set of n; ways is the same as any of the n, ways,
then there are n; + n, ways to do the task.

Example: The mathematics department must choose
either a student or a faculty member as a representative for
a university committee. How many choices are there for
this representative if there are 37 members of the
mathematics faculty and 83 mathematics majors and no
one is both a faculty member and a student.

Solution: By the sum rule it follows that there are
37 + 83 = 120 possible ways to pick a representative.
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The Sum Rule in terms of sets.

The sum rule can be phrased in terms of sets.

|A U B|=|A| + |B| as long as A and B are disjoint
sets.
Or more generally,

[A1 UA; U UA, [=|Ag + |Ag] + - + A
whenA;NA; =@ forall i, j.

The case where the sets have elements in common will
be discussed when we consider the subtraction rule
and taken up fully in Chapter 8.
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“Combining the Sum and Product
Rule

Example: Suppose statement labels in a programming
language can be either a single letter or a letter
followed by a digit. Find the number of possible labels.

Solution: Use the product rule.
26 + 26 10 =286
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Counting Passwords

Combining the sum and product rule allows us to solve more complex problems.

Example: Each user on a computer system has a password, which is six to eight

characters long, where each character is an uppercase letter or a digit. Each password
must contain at least one digit. How many possible passwords are there?

Solution: Let P be the total number of passwords, and let Pg, P;, and Pg be the
passwords of length 6, 7, and 8.

e Bythesumrule P = P + P; +P;.

e To find each of P, P,, and Py, we find the number of passwords of the specified length

c}cl)mposed of letters and digits and subtract the number composed only of letters. We find
that:

Py =36° — 266 =2,176,782,336 — 308,915,776 =1,867,866,560.

Prsapr s
78,364,164,096 — 8,031,810,176 = 70,332,353,920.
Py =368 — 268 =

2,821,109,907,456 — 208,827,064,576 =2,612,282,842,880.

Consequently, P = P, + P; +Pg = 2,684,483,063,360.
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Internet Addresses

L e T

Version 4 of the Internet Protocol (IPV4) uses 32 bits.

2 3 4

Bit Number 0

1

31

Class A 0

netid

|

hostid

netid

|

hostid

0

netid

l hostid

1

0

Multicast Address

1
1
1
1

0
1
1
1

1

1

°]

Address

Class A Addresses:
and a 24-bit hostid.

used for the largest networks, a 0,followed by a 7-bit netid

Class B Addresses: used for the medium-sized networks, a 10,followed by a

14-bit netid and a 16-bit hostid.

Class C Addresses: used for the smallest networks, a 110,followed by a 21-bit

netid and a 8-bit hostid.

e Neither Class D nor Class E addresses are assigned as the address of a computer
on the internet. Only Classes A, B, and C are available.

e 1111111 is not available as the netid of a Class A network.
» Hostids consisting of all 0s and all 1s are not available in any network.
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Counting Internet Addresses

Example: How many different IPv4 addresses are available for
computers on the internet?

Solution: Use both the sum and the product rule. Let x be the number
of available addresses, and let x,, xz, and x: denote the number of
addresses for the respective classes.

e Tofind, x,: 27 — 1 = 127 netids. 22* — 2 = 16,777,214 hostids.
x,=127-16,777,214 = 2,130,706,178.

e To find, xz: 2 = 16,384 netids. 21 — 2 = 16,534 hostids.
xg=16,384-16,534 =1,073,709,056.

e To find, x.: 221 =2097,152 netids. 28 — 2 = 254 hostids.
xc= 2,097,152 - 254 = 532,676,608.

e Hence, the total number of available IPv4 addresses is

X=Xp+ Xg +XC
=2,130,706,178 + 1,073,709,056 + 532,676,608

=3,737,091,842. Not Enough Today !!
The newer [Pv6 protocol solves the problem
of too few addresses.
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—Basic Counting Principles:
Subtraction Rule

Subtraction Rule: If a task can be done either in one
of n; ways or in one of n, ways, then the total number
of ways to do the task is n; + n, minus the number of
ways to do the task that are common to the two

different ways.
Also known as, the principle of inclusion-exclusion:

AUB| = |A|+ |B|—|AN B|
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Counting Bit Strings

Example: How many bit strings of length eight either
start with a 1 bit or end with the two bits 007

Solution: Use the subtraction rule. ‘

e Number of bit strings of length eight 27~ 128 ways
that start with a 1 bit: 27 = 128 Y 20
e Number of bit strings of length eight 2= 64 waye e
that start with bits 00: 2° = 64 - 3
2° =32 ways

e Number of bit strings of length eight
that start with a 1 bit and end with bits 00 ;: 25 =32

Hence, the numberis 128 + 64 — 32 = 160.
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“Basic Counting Principles: Division

Rule

Division Rule: There are n/d ways to do a task if it can be done using a procedure that can
be carried out in n ways, and for every way w, exactly d of the n ways correspond to way
w.

Restated in terms of sets: If the finite set A is the union of n pairwise disjoint subsets
each with d elements, then n = |A|/d.

In terms of functions: If fis a function from A to B, where both are finite sets, and for
every value y € B there are exactly d values x € A such that f{x) =y, then |B| = |A|/d.

Example: How many ways are there to seat four people around a circular table, where two
seatings are considered the same when each person has the same left and right
neighbor?

Solution: Number the seats around the table from 1 to 4 proceeding clockwise. There are
four ways to select the person for seat 1, 3 for seat 2, 2, for seat 3, and one way for seat 4.
Thus there are 4! = 24 ways to order the four people. But since two seatings are the same

when each person has the same left and right neighbor, for every choice for seat 1, we get
the same seating.

Therefore, by the division rule, there are 24/4 = 6 different seating arrangements.






Section Summary

The Pigeonhole Principle
The Generalized Pigeonhole Principle
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The Pigeonhole Principle

If a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of
the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle: If k is a positive integer and k + 1 objects
are placed into k boxes, then at least one box contains two or
more objects.

Proof: We use a proof by contraposition. Suppose none of the k
boxes has more than one object. Then the total number of
objects would be at most k. This contradicts the statement that
we have k + 1 objects. <
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The Pigeonhole Principle

Corollary 1: A function f from a set with k + 1
elements to a set with k elements is not one-to-one.
Proof: Use the pigeonhole principle.

 Create a box for each element y in the codomain of f.

e Put in the box for y all of the elements x from the
domain such that f{x) =y.

e Because there are k + 1 elements and only k boxes, at
least one box has two or more elements.

Hence, f can’t be one-to-one.
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Pigeonhole Principle

Example: Among any group of 367 people, there must be at least
two with the same birthday, because there are only 366 possible
birthdays.

Example (optional): Show that for every integer n there is a
multiple of n that has only Os and 1s in its decimal expansion.

Solution: Let n be a positive integer. Consider the n + 1 integers
1,11, 111, ..., 11...1 (where the last has n + 1 1s). There are n
possible remainders when an integer is divided by n. By the
pigeonhole principle, when each of the n + 1 integers is divided
by n, at least two must have the same remainder. Subtract the
smaller from the larger and the result is a multiple of n that has
only Os and 1s in its decimal expansion.
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The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle: If N objects are
placed into k boxes, then there is at least one box
containing at least [N/k] objects.

Proof: We use a proof by contraposition. Suppose that
none of the boxes contains more than [N/k] — 1 objects.
Then the total number of objects is at most

N N
kqﬂ _1) <k((?+1> _1> -
where the inequality [N/k] < [N/k] + 1 has been used. This
is a contradiction because there are a total of n objects.

Example: Among 100 people there are at least
[100/12] = 9 who were born in the same month.
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The Generalized Pigeonhole Principle

Example: a) How many cards must be selected from a standard
deck of 52 cards to guarantee that at least three cards of the
same suit are chosen?

b) How many must be selected to guarantee that at least three
hearts are selected?

Solution: a) We assume four boxes; one for each suit. Using the
igenerahzed pigeonhole principle, at least one box contains at
east [N/4] cards. At least three cards of one suit are selected if
[N/ 4] >3. The smallest integer N such that [N/4] =3 is
N=2:-44+1=09.

b) A deck contains 13 hearts and 39 cards which are not hearts.
So, if we select 41 cards, we may have 39 cards which are not
hearts along with 2 hearts. However, when we select 42 cards, we
must have at least three hearts. (Note that the generalized
pigeonhole principle is not used here.)



Permutations and
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Permutations

Definition: A permutation of a set of distinct objects
is an ordered arrangement of these objects. An ordered
arrangement of r elements of a set is called an
r-permuation.

Example: Let S = {1,2,3}.
e The ordered arrangement 3,1,2 is a permutation of S.
e The ordered arrangement 3,2 is a 2-permutation of S.

The number of r-permuatations of a set with n
elements is denoted by P(n,r).

e The 2-permutations of S = {1,2,3} are 1,2; 1,3; 2,1; 2,3;
3,1; and 3,2. Hence, P(3,2) = 6.



"AFormula for the Number of
Permutations

Theorem 1: If n is a positive integer and r is an integer with
1 < r < n, then there are

Pn,r)=n(n— 1)(n—2) (n—r+1)
r-permutations of a set with n distinct elements.

Proof: Use the product rule. The first element can be chosen in n
ways. The second in n — 1 ways, and so on until there are
(n — (r — 1)) ways to choose the last element.

Note that P(n,0) = 1, since there is only one way to order zero
elements.

Corollary 1: If n and r are integers with 1 < r < n, then

Pin. r 2

o (n—.’r)!
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“Solving Counting Problems by
Counting Permutations

Example: How many ways are there to select a first-

prize winner, a second prize winner, and a third-prize

winner from 100 different people who have entered a
contest?

Solution:

P(100,3) =100-99-98 = 970,200
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“Solving Counting Problems by
Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight
different cities. She must begin her trip in a specified
city, but she can visit the other seven cities in any order
she wishes. How many possible orders can the
saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are
ordered arbitrarily. Hence the orders are:

7'=7:6-5-4-3-2-1=5040
[f she wants to find the tour with the shortest path that
visits all the cities, she must consider 5040 paths!



~Solving Counﬁng\ProB@mTw/

Counting Permutations (continued)

Example: How many permutations of the letters
ABCDEFGH contain the string ABC ?

Solution: We solve this problem by counting the
permutations of six objects, ABC, D, E, F, G, and H.

6l=6:5"4 "3 -2-1=770
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Combinations

Definition: An r-combination of elements of a set is an
unordered selection of r elements from the set. Thus, an
r-combination is simply a subset of the set with r elements.

The number of r-combinations of a set with n distinct
elements is denoted by C(n, r). The notation () isalso
used and is called a binomial coefficient. (We will see the
notation again in the binomial theorem in Section 6.4.)
Example: Let S be the set {a, b, ¢, d}. Then {q, c, d} is a 3-
combination from S. It is the same as {d, ¢, a} since the
order listed does not matter.

C(4,2) = 6 because the 2-combinations of {a, b, c, d} are the
six subsets {a, b}, {qa, c}, {qa, d}, {b, c}, {b, d}, and {c, d}.
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Combinations

Theorem 2: The number of r-combinations of a set
with n elements, where n > r > 0, equals

Cinr— "

(n—r)lr!:

Proof: By the product rule P(n, r) = C(n,r) - P(r,r).
Therefore,
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Combinations

Example: How many poker hands of five cards can be dealt
from a standard deck of 52 cards? Also, how many ways are
there to select 47 cards from a deck of 52 cards?

Solution: Since the order in which the cards are dealt does
not matter, the number of five card hands is:

€525 — >

__ 52.51-50-49-48 __ =
= e =26-17-10-49-12 = 2,598,960

The different ways to select 47 cards from 52 is

C(52,47) = 22 = C(52,5) = 2, 598, 960.

This is a special case of a general result. =
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Combinations

Corollary 2: Let n and r be nonnegative integers with
r<n.Then C(n,r) =C(n,n —r).

Proof: From Theorem 2, it follows that

Cln,r) = (n—n’r!)!r!
and
n! n!
C(TL,TL = T) S (n—r)![n—(n—r)]! o (n—r)lr! °
Hence, C(n, r) = C(n, n —r). <

This result can be proved without using algebraic manipulation. -
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Combinatorial Proofs

Definition 1: A combinatorial proof of an identity is a
proof that uses one of the following methods.

e A double counting proof uses counting arguments to
prove that both sides of an identity count the same
objects, but in different ways.

A bijective proof shows that there is a bijection between
the sets of objects counted by the two sides of the
identity.
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Combinatorial Proofs

Here are two combinatorial proofs that
C(n,r)=C(n,n—r)
when r and n are nonnegative integers with r< n:

e Bijective Proof: Suppose that S is a set with n elements. The
function that maps a subset A of S to A is a bijection between
the subsets of S with r elements and the subsets with n — r
elements. Since there is a bijection between the two sets, they
must have the same number of elements. <

e Double Counting Proof: By definition the number of subsets
of S with r elements is C(n, r). Each subset A of S can also be
described by specifying which elements are not in A, i.e.,
those which are in A . Since the complement of a subset of S
with r elements has n — r elements, there are also C(n, n —r)
subsets of Swith relements. <
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Combinations

Example: How many ways are there to select five players
from a 10-member tennis team to make a trip to a match at
another school.

Solution: By Theorem 2, the number of combinations is

C(10,5) = 32 = 252.
Example: A group of 30 people have been trained as
astronauts to go on the first mission to Mars. How many
ways are there to select a crew of six people to go on this
mission?

Solution: By Theorem 2, the number of possible crews is

Ci(30,6) = S0 - S0 I IS rgg wrs
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‘and Combmatlons
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Permutations with Repetition
Combinations with Repetition
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Distributing Objects into Boxes
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Permutations with Repetition

Theorem 1: The number of r-permutations of a set of n
objects with repetition allowed is n".

Proof: There are n ways to select an element of the set for
each of the r positions in the r-permutation when
repetition is allowed. Hence, by the product rule there are
n" r-permutations with repetition. <

Example: How many strings of length r can be formed
from the uppercase letters of the English alphabet?

Solution: The number of such strings is 26", which is the
number of r-permutations of a set with 26 elements.



Combinations with Repetition

Example: How many ways are there to select five bills
from a box containing at least five of each of the

following denominations: $1, $2, $5, $10, $20, $50,
and $1007?

Solution: Place the selected bills in the appropriate
position of a cash box illustrated below:

continued =
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Combinations with Repetition

Some possible ways of
placing the five bills:

[ [l ] ] ns

$$(v)$
3550

# [ |+] ]

$(=)$
$5()8
$()$

©
*“

&+
© ©lloll-aNNENEE
&> &+

» *

The number of ways to select five bills corresponds to the
number of ways to arrange six bars and five stars in a row.

This is the number of unordered selections of 5 objects from a
set of 11. Hence, there are

C{IL 5 2= 469

ways to choose five bills with seven types of bills.
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Combinations with Repetition

Theorem 2: The number of r-combinations from a set with n
elements when repetition of elements is allowed is

Cln+r-1r)=C(n+r-1,n-1).
Proof: Each r-combination of a set with n elements with

repetition allowed can be represented by a list of n -1 bars and r
stars. The bars mark the n cells containing a star for each time
the ith element of the set occurs in the combination.

The number of such lists is C(n + r - 1, r), because each list is a
choice of the r positions to place the stars, from the total of
n+r -1 positions to place the stars and the bars. This is also

equal to C(n + r - 1, n -1), which is the number of ways to place
the n -1 bars. <
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Combinations with Repetition

Example: How many solutions does the equation
X1+ Xy + X3 = 11
have, where x; , x, and x; are nonnegative integers?

Solution: Each solution corresponds to a way to select
11 items from a set with three elements; x; elements of

type one, x, of type two, and x; of type three.

By Theorem 2 it follows that there are
G311 1 1 =C(3 1) = i3 0y < - 3

solutions.
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Combinations with Repetitlon

Example: Suppose that a cookie shop has four

different kinds of cookies. How many different ways
can six cookies be chosen?

Solution: The number of ways to choose six cookies is
the number of 6-combinations of a set with four
elements. By Theorem 2

C(9,6) = C(9,3) = 28T — g4

is the number of ways to choose six cookies from the
four kinds.



Summarizing the Formulas for Counting Permutations
and Combinations with and without Repetition

TABLE 1 Combinations and Permutations With
and Without Repetition.
Type Repetition Allowed? Formula
n!
r-permutations No
(n—r)!
n!
r-combinations No
r'(n—r)!
r-permutations Yes n’
—1)!
r-combinations Yes M
rt(n—1)!




“Permutations with
Indistinguishable Objects

Example: How many different strings can be made by reordering the
letters of the word SUCCESS.

Solution: There are seven possible positions for the three Ss, two Cs,
one U, and one E.

e The three Sscan be placed in C(7,3) different ways, leaving four
positions free.

e The two Cscan be placed in C(4,2) different ways, leaving two
positions free.

e The U can be placed in C(2,1) different ways, leaving one position free.
e The E can be placed in C(1,1) way.
By the product rule, the number of different strings is:

C(7,3)C(4,2)C(2,1)C(1,1) = 31!1! : 24!%! : 1%! : 1%(!)! = 3'2'7—1'1' = 420.

The reasoning can be generalized to the following theorem. —



“Permutations with
Indistinguishable Objects

Theorem 3: The number of different permutations of n objects, where there are
n; indistinguishable objects of type 1, n, indistinguishable objects of
type 2, ....,, and ni indistinguishable objects of type k, is:

n!
nilngl--ng! °

Proof: By the product rule the total number of permutations is:

C(n,n;)C(n —nyny) Cn —ny —n, — - —ny, ng) since:

e The n; objects of type one can be placed in the n positions in C(n, n; ) ways,
leaving n —n, positions.

e Then the n, objects of type two can be placed in the n —n; positions in
C(n —ny, n, ) ways, leaving n —n; — n, positions.

e Continue in this fashion, until n; objects of type k are placed in
C(n —ny —ny, — = — Ny, ng) ways.

The product can be manipulated into the desired result as follows:

n! (n—n1)! o nena—e—np ) n!
nil(n—ni)! n2l(n—mi1—n2!) n!0! T nilngleng! <
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Distributing Objects into Boxes

Many counting problems can be solved by counting
the ways objects can be placed in boxes.

* The objects may be either different from each other
(distinguishable) or identical (indistinguishable).

e The boxes may be labeled (distinguishable) or unlabeled
(indistinguishable).
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Distributing Objects into Boxes

Distinguishable objects and distinguishable boxes.

e There are n!/(n;!n,! --n;!) ways to distribute n distinguishable
objects into k distinguishable boxes.

* (See Exercises 47 and 48 for two different proofs.)
e Example: There are 52!/(5!5!5!5!32!) ways to distribute hands of 5
cards each to four players.
Indistinguishable objects and distinguishable boxes.

e There are C(n + r — 1, n — 1) ways to place r indistinguishable
objects into n distinguishable boxes.

e Proof based on one-to-one correspondence between
n-combinations from a set with k-elements when repetition is
allowed and the ways to place n indistinguishable objects into k
distinguishable boxes.

e Example: Thereare C(8 + 10 — 1, 10) = C(17,10) = 19,448 ways to
place 10 indistinguishable objects into 8 distinguishable boxes.
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Distributing Objects into Boxes

Distinguishable objects and indistinguishable boxes.

e Example: There are 14 ways to put four employees into three
indistinguishable offices (see Example 10).

e There is no simple closed formula for the number of ways to
distribute n distinguishable objects into j indistinguishable boxes.

e See the text for a formula involving Stirling numbers of the second

kind.

Indistinguishable objects and indistinguishable boxes.

e Example: There are 9 ways to pack six copies of the same book into
four identical boxes (see Example 11).

e The number of ways of distributing n indistinguishable objects into
k indistinguishable boxes equals p;(n), the number of ways to write
n as the sum of at most k positive integers in increasing order.

e No simple closed formula exists for this number.
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Section Summary

* The Principle of Inclusion-Exclusion
* Examples



Principle of Inclusion-Exclusion

In Section 2.2, we developed the following formula for
the number of elements in the union of two finite sets:

AUB| = |A|+ |B|—|AN B|

We will generalize this formula to finite sets of any
size.
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Two Finite Sets

Example: In a discrete mathematics class every student is a major in
computer science or mathematics or both. The number of students
having computer science as a major (possibly along with mathematics)
is 25; the number of students having mathematics as a major (possibly
along with computer science) is 13; and the number of students
majoring in both computer science and mathematics is 8. How many
students are in the class?

Solution: |AUB| = |A| + |B| —|]ANB|
= 25413 -8=30

|A U B|=|A|+|B|-|A N B|=25+13-8=30

|A]=25 AN B|=8 |B|=13
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AUBLE| =
A+ |B|+|C|—|ANB|—|ANnC|—|BNC|+|AnBNC|
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o

/ '

Three Finite Sets Continued

Example: A total of 1232 students have taken a course in Spanish, 879
have taken a course in French, and 114 have taken a course in Russian.
Further, 103 have taken courses in both Spanish and French, 23 have
taken courses in both Spanish and Russian, and 14 have taken courses
in both French and Russian. If 2092 students have taken a course in at
least one of Spanish French and Russian, how many students have
taken a course in all 3 languages.

Solution: Let S be the set of students who have taken a course in
Spanish, F the set of students who have taken a course in French, and R
the set of students who have taken a course in Russian. Then, we have

S| = 1232, |F| = 879, |R| = 114, |SNF| = 103, |SNR| = 23, |FNR| = 14,
and |SUFUR| = 23.

Using the equation
|ISUFUR| = |S|+ |F|+ |R| — |SNF| — |SNR| — |FNR| + |SNFNR|,
we obtain 2092 = 1232 + 879 + 114 —103 —23 —14 + |SNFNRY.
Solving for |SNFNR| yields 7.
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The Number of Onto Functions

Example: How many onto functions are there from a set with six elements to a set with three
elements?

Solution: Suppose that the elements in the codomain are b,, b,, and b.. Let P, P,, and P, be the

properties that b,, b,, and b, are not in the range of the function, respectively. The function is onto if
none of the properties P,, Pi, and P, hold.

By the inclusion-exclusion principle the number of onto functions from a set with six elements to a set
with three elements is

N — [N(P) + N(P,) + N(P))] +
[N(P,P,) + N(P,Py) + N(P,P))| — N(P,P,P;)

e Here the total number of functions from a set with six elements to one with three elements is N = 3°.
e The number of functions that do not have in the range is N(P,) = 2°. Similarly, N(P,) = N(3,) = 2°.
e Note that N(P,P,) = N(P,P;) = N(P,P;) = 1 and N(P,P,P;)= 0.

Hence, the number of onto functions from a set with six elements to a set with three elements is:

36 —3-2643 =729—-192 +3 =540



