
Chapter 6

With Question/Answer Animations



Chapter Summary
� The Basics of Counting
� The Pigeonhole Principle
� Permutations and Combinations
� Binomial Coefficients and Identities
� Generalized Permutations and Combinations
� Generating Permutations and Combinations (not yet 

included in overheads)



Section 6.1



Section Summary
� The Product Rule
� The Sum Rule
� The Subtraction Rule
� The Division Rule
� Examples, Examples, and Examples
� Tree Diagrams



Basic Counting Principles: The Product 
Rule

The Product Rule: A procedure can be broken down 
into a sequence of two tasks. There are n1 ways to do 
the first task and n2 ways to do the second task. Then 
there are n1·n2 ways to do the procedure.

Example: How many bit strings of length seven are 
there?
Solution: Since each of the seven bits is either a 0 or a 
1, the answer is 27 = 128.



The Product Rule
Example: How many different license plates can be 
made if each plate contains a sequence of three 
uppercase English letters followed by three digits?
Solution:  By the product rule,
there	are	26	∙	26	∙	26	∙	10	∙	10	∙	10	=	17,576,000	
different	possible	license	plates.



Counting Functions
Counting Functions: How many functions are there from a set 
with m elements to a set with n elements?
Solution:  Since a function represents a choice of one of the n
elements of the codomain for each of the m elements in the 
domain, the product rule tells us that there are n ∙ n ∙	∙	∙	 n = nm

such functions.

Counting One-to-One Functions: How many one-to-one 
functions are there from a set with m elements to one with n
elements?
Solution: Suppose the elements in the domain are                      
a1, a2,…, am. There are n ways to choose the value of a1	and n−1	
ways to choose a2, etc. The product rule tells us that there are                          
n(n−1) (n−2)∙∙∙(n−m+1)	such	functions.



Telephone Numbering Plan
Example: The North American numbering plan (NANP) specifies that a telephone 
number consists of 10 digits, consisting of a three-digit area code, a three-digit office 
code, and a four-digit station code.  There are some restrictions on the digits.
� Let X denote a digit from 0 through 9.
� Let N denote a digit from 2 through 9.
� Let Y denote a digit that is  0 or 1.
� In the old plan (in use in the 1960s) the format was NYX-NNX-XXX.
� In the new plan, the format is NXX-NXX-XXX.

How many different telephone numbers are possible under the old plan and the new 
plan?

Solution:  Use the Product Rule.
� There are 8	∙2	∙10	= 160 area codes with the format NYX.
� There are  8	∙10	∙10	= 800 area codes with the format NXX. 
� There are 8	∙8	∙10	= 640 office codes with the format NNX.  
� There are  10	∙10	∙10	∙10	= 10,000 station codes with the format XXXX. 

Number of  old plan telephone numbers: 160	∙640	∙10,000	= 1,024,000,000.
Number of new plan telephone numbers: 800	∙800	∙10,000	= 6,400,000,000.



Counting Subsets of a Finite Set
Counting Subsets of a Finite Set: Use the product rule to 
show that the number of different subsets of a finite set S is 
2|S|. (In Section 5.1, mathematical induction was used 
to prove this same result.)
Solution: When the elements of S are listed in an 
arbitrary order, there is a one-to-one correspondence 
between subsets of S and bit strings of length |S|.  When 
the ith element is in the subset, the bit string has a 1 in the 
ith position and a 0 otherwise.

By the product rule, there are  2|S| such bit strings, and 
therefore 2|S| subsets.



Product Rule in Terms of Sets
� If A1, A2, … ,	Am are finite sets, then the number of 

elements in the Cartesian product of these sets is the 
product of the number of elements of each set.

� The task of choosing an element in the Cartesian 
product A1⨉	A2⨉	∙∙∙	⨉	Am is done by choosing an 
element in A1,	an element in A2 ,	…,	and	an	element	
in	Am.	

� By the product rule, it follows that:
|A1⨉	A2⨉	∙∙∙	⨉	Am |= |A1| ∙ |A2| ∙ ∙∙∙		∙	|Am|. 



Basic Counting Principles:  The Sum Rule
The Sum Rule: If a task can be done either in one of n1
ways or in one of   n2 ways to do the second task, where 
none of the set of n1 ways is the same as any of the  n2 ways,  
then there are n1	+ n2 ways  to do the task.
Example:  The mathematics department must choose 
either a student or a faculty member as a representative for 
a university committee. How many choices are there for 
this representative if there are 37 members of the 
mathematics faculty and 83 mathematics majors and no 
one is both a faculty member and a student.
Solution: By the sum rule it follows that there are                    
37 + 83 = 120 possible ways to pick a representative.



The Sum Rule in terms of sets.
� The sum rule can be phrased in terms of sets.

|A ∪	B|= |A| + |B| as long as A and B are disjoint 
sets.

� Or more generally,

� The case where the sets have elements in common will 
be discussed when we consider the subtraction rule 
and taken up fully in Chapter 8.

|A1 ∪	A2 ∪	∙∙∙	∪	Am |= |A1| + |A2| + ∙∙∙	+ |Am| 
when Ai ∩	Aj =	∅	for all i, j.



Combining the Sum and Product 
Rule

Example: Suppose statement labels in a programming 
language can be either a single letter or a letter 
followed by a digit. Find the number of possible labels.
Solution:  Use the product rule.
26 + 26	∙ 10 = 286



Counting Passwords
� Combining the sum and product rule allows us to solve more complex problems.

Example: Each user on a computer system has a password, which is six to eight 
characters long, where each character is an uppercase letter or a digit. Each password 
must contain at least one digit. How many possible passwords are there?

Solution:  Let P be the total number of passwords, and let P6, P7, and P8 be the 
passwords of length 6, 7, and 8. 
� By the sum rule P = P6 + P7 +P8. 
� To find each of P6, P7, and P8 , we find the number of passwords of the specified length 

composed of letters and digits and subtract the number composed only of letters. We find 
that:

P6 = 366 − 266 =2,176,782,336	− 308,915,776 =1,867,866,560.
P7 = 367 − 267 =

78,364,164,096	− 8,031,810,176 =  70,332,353,920.
P8 = 368 − 268 =

2,821,109,907,456	− 208,827,064,576 =2,612,282,842,880.

Consequently, P = P6 + P7 +P8 = 2,684,483,063,360.



Internet Addresses
� Version 4 of the Internet Protocol (IPv4) uses 32 bits.

� Class A Addresses: used for the largest networks, a 0,followed by a 7-bit netid
and a 24-bit hostid.

� Class B Addresses: used for the medium-sized networks, a 10,followed by a 
14-bit netid and a 16-bit hostid.

� Class C Addresses: used for the smallest networks, a 110,followed by a 21-bit 
netid and a 8-bit hostid.
� Neither Class D nor Class E addresses are assigned as the address of a computer 

on the internet. Only Classes A, B, and C are available. 
� 1111111 is not available as the netid of a Class A network.
� Hostids consisting of all 0s and all 1s are not available in any network. 



Counting Internet Addresses
Example: How many different IPv4 addresses are available for 
computers on the internet?
Solution: Use both the sum and the product rule. Let x be the number 
of available addresses, and let xA, xB, and xC denote the number of 
addresses for the respective classes.
� To find, xA: 27 −	1	=	127	netids.	224 −	2	=	16,777,214	hostids.	

xA = 127∙	16,777,214	=	2,130,706,178.
� To find, xB: 214 =	16,384	netids.	216 −	2	=	16,534	hostids.	

xB = 16,384	∙	16,	534	=	1,073,709,056.
� To find, xC: 221 =	2,097,152	netids.	28 −	2	=	254	hostids.	

xC = 2,097,152	∙	254	=	532,676,608.
� Hence, the total number of available IPv4 addresses is

x = xA +  xB + xC
= 2,130,706,178	+	1,073,709,056	+	532,676,608
=	3,	737,091,842. Not Enough Today !!

The newer IPv6 protocol solves the problem 
of too few addresses.



Basic Counting Principles: 
Subtraction Rule

Subtraction Rule: If a task can be done either in one 
of n1 ways or in one of  n2 ways, then the total number 
of ways to do the task is  n1	+ n2 minus the number of 
ways  to do the task that are common to the two 
different ways.

� Also known as, the principle of inclusion-exclusion:



Counting Bit Strings
Example: How many bit strings of length eight either 
start with a 1 bit or end with the two bits 00?
Solution:  Use the subtraction rule.
� Number of bit strings of length eight                                    

that start with a 1 bit:  27 = 128
� Number of bit strings of length eight                                    

that start with bits 00:  26 = 64
� Number of bit strings of length eight                                

that start with a 1 bit and end with bits 00	:  25 = 32
Hence,	the	number	is	128	+	64	−	32	=	160.



Basic Counting Principles: Division 
Rule

Division Rule: There are n/d ways to do a task if it can be done using a procedure that can 
be carried out in n ways, and for every way w, exactly d of the n ways correspond to way 
w. 

� Restated in terms of sets: If the finite set A is the union of n pairwise disjoint subsets 
each with d elements, then n = |A|/d.

� In terms of functions: If f is a function from A to B, where both are finite sets, and for 
every value y ∈ B there are exactly d values x ∈ A such that f(x) = y, then   |B| = |A|/d.

Example: How many ways are there to seat four people around a circular table, where two 
seatings are considered the same when each person has the same left  and right 
neighbor?
Solution: Number the seats around the table from 1 to 4 proceeding clockwise. There are 
four ways to select the person for seat 1, 3 for seat 2, 2, for seat 3, and one way for seat 4. 
Thus there are 4! = 24 ways to order the four people. But since two seatings are the same 
when each person has the same left and right neighbor, for every choice for seat 1, we get 
the same seating. 

Therefore, by the division rule, there are 24/4 = 6 different seating arrangements. 



Section 6.2



Section Summary
� The Pigeonhole Principle
� The Generalized Pigeonhole Principle



The Pigeonhole Principle
� If a flock of 20 pigeons roosts in a set of  19	pigeonholes, one of 

the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle: If k is a positive integer and k + 1 objects 
are placed into k boxes, then at least one box contains two or 
more objects. 
Proof: We use a proof  by contraposition. Suppose none of the k
boxes has more than one object. Then the total number of 
objects would be at most k. This contradicts the statement that 
we have k + 1 objects.



The Pigeonhole Principle
Corollary 1: A function f from a set with k + 1
elements to a set with k elements is not one-to-one.
Proof: Use the pigeonhole principle.
� Create a box for each element y in the codomain of f .
� Put in the box for y all of the elements x from the 

domain such that f(x) = y.  
� Because there are k + 1 elements and only k boxes, at 

least one box has two or more elements. 
Hence, f can’t be one-to-one.



Pigeonhole Principle
Example: Among any group of 367 people, there must be at least 
two with the same birthday, because there are only 366 possible 
birthdays.

Example (optional): Show that for every integer n there is a 
multiple of n that has only 0s and 1s in its decimal expansion. 
Solution: Let n be a positive integer. Consider the n + 1 integers 
1, 11, 111, …., 11…1 (where the last has n + 1	1s). There are n
possible remainders when an integer is divided by n. By the 
pigeonhole principle, when each of the n + 1 integers is divided 
by n, at least two must have the same remainder. Subtract the 
smaller from the larger and the result is a multiple of n that has 
only 0s and 1s in its decimal expansion. 



The Generalized Pigeonhole Principle
The Generalized Pigeonhole Principle: If N objects are 
placed into k boxes, then there is at least one box 
containing at least ⌈N/k⌉ objects.
Proof: We use a proof by contraposition. Suppose that 
none of the boxes contains more than ⌈N/k⌉ −	1	objects. 
Then the total number of objects is at most

where the inequality ⌈N/k⌉ < ⌈N/k⌉ + 1 has been used. This 
is a contradiction because there are a total of n objects.

Example: Among 100 people there are at least           
⌈100/12⌉	=	9 who were born in the same month.



The Generalized Pigeonhole Principle
Example:  a) How many cards must be selected from a standard 
deck of 52 cards to guarantee that at least three cards of the 
same suit are chosen? 
b) How many must be selected to guarantee that at least three 
hearts are selected?
Solution: a) We assume four boxes; one for each suit. Using the 
generalized pigeonhole principle, at least one box contains at 
least ⌈N/4⌉ cards. At least three cards of one suit are selected if 
⌈N/4⌉ ≥3. The smallest integer N such that ⌈N/4⌉ ≥3	is
N =	2	∙	4	+	1	=	9.
b)	A	deck	contains	13	hearts	and	39	cards	which	are	not	hearts.	
So,	if	we	select	41	cards,	we	may	have	39	cards	which	are	not	
hearts	along	with	2	hearts.	However,	when	we	select	42	cards,	we	
must	have	at	least	three	hearts.	(Note	that	the	generalized	
pigeonhole	principle	is	not	used	here.)



Section 6.3



Section Summary
� Permutations
� Combinations
� Combinatorial Proofs



Permutations
Definition: A permutation of a set of distinct objects 
is an ordered arrangement of these objects. An ordered 
arrangement of r elements of a set is called an                      
r-permuation.
Example: Let S = {1,2,3}. 
� The ordered arrangement 3,1,2 is a permutation of S.
� The ordered arrangement 3,2 is a 2-permutation of S.

� The number of r-permuatations of a set with n
elements is denoted by P(n,r).
� The 2-permutations of S = {1,2,3} are 1,2;	1,3;	2,1;	2,3;	
3,1;	and	3,2.	Hence,	P(3,2)	=	6.



A Formula for the Number of 
Permutations

Theorem 1: If n is a positive integer and r is an integer with            
1 ≤ r ≤ n, then there are

P(n, r) = n(n − 1)(n − 2) ∙∙∙ (n − r + 1)
r-permutations of a set with n distinct elements.
Proof: Use the product rule. The first element can be chosen in n
ways. The second in n − 1	ways,	and	so	on	until	there	are													
(n − ( r − 1)) ways to choose the last element.

� Note that P(n,0) = 1, since there is only one way to order zero 
elements.
Corollary 1: If n and r are integers with 1 ≤ r ≤ n, then



Solving Counting Problems by 
Counting Permutations

Example: How many ways are there to select a first-
prize winner, a second prize winner, and a third-prize 
winner from 100 different people who have entered a 
contest?

Solution: 
P(100,3) = 100 ∙ 99	∙ 98 = 970,200



Solving Counting Problems by 
Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight 
different cities. She must begin her trip in a specified 
city, but she can visit the other seven cities in any order 
she wishes. How many possible orders can the 
saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are 
ordered arbitrarily. Hence the orders are:

7! = 7 ∙ 6 ∙ 5	∙ 4	∙ 3 ∙ 2 ∙ 1	= 5040
If	she	wants	to	find	the	tour	with	the	shortest	path	that	
visits	all	the	cities,	she	must	consider	5040	paths!



Solving Counting Problems by 
Counting Permutations (continued)

Example: How many permutations of the letters 
ABCDEFGH contain the string ABC ?

Solution: We solve this problem by counting the 
permutations of six objects, ABC, D, E, F, G, and H.

6! = 6 ∙ 5	∙ 4	∙ 3 ∙ 2 ∙ 1	= 720



Combinations
Definition: An r-combination of elements of a set is an 
unordered selection of r elements from the set. Thus, an    
r-combination is simply a subset of the set with r elements.

� The number of r-combinations of a set with n distinct 
elements is denoted by C(n, r). The notation          is also 
used and is called a binomial coefficient. (We will see the 
notation again in the binomial theorem in Section 6.4.)
Example: Let S be the set {a, b, c, d}. Then {a, c, d} is a 3-
combination from S. It is the same as {d, c, a} since the 
order listed does not matter.

� C(4,2) = 6	because	the	2-combinations	of	{a, b, c, d} are the 
six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. 



Combinations
Theorem 2: The number of r-combinations of a set 
with n elements, where n ≥ r≥	0,	equals

Proof:		By	the	product	rule	P(n, r) = C(n,r) · P(r,r). 
Therefore, 



Combinations
Example: How many poker hands of five cards can be dealt 
from a standard deck of 52 cards? Also, how many ways are 
there to select 47 cards from a deck of 52 cards?
Solution: Since the order in which the cards are dealt does 
not matter, the number of five card hands is:

� The different ways to select 47 cards from 52 is

This is a special case of a general result. →



Combinations
Corollary 2: Let n and r be nonnegative integers with     
r ≤	n. Then C(n, r) = C(n, n −	r).
Proof:	From	Theorem	2,	it	follows	that

and	

Hence, C(n, r) = C(n, n −	r).

This result can be proved without using algebraic manipulation. →



Combinatorial Proofs
� Definition 1: A combinatorial proof of an identity is a 

proof that  uses one of the following methods.
� A double counting proof uses counting arguments to 

prove that both sides of an identity count the same 
objects, but in different ways.

� A bijective proof  shows  that there is a bijection between 
the sets of objects counted by the two sides of the 
identity.



Combinatorial Proofs
� Here are two combinatorial proofs that 

C(n, r) = C(n, n −	r)	
when	r	and	n	are	nonnegative	integers	with	r <	n:
� Bijective Proof: Suppose that S is a set with n elements. The 

function that maps a subset A of S to      is a bijection between 
the subsets of S with r elements and the subsets with n −	r
elements.	Since	there	is	a	bijection between	the	two	sets,	they	
must	have	the	same	number	of	elements.	

� Double Counting Proof: By definition the number of subsets 
of S with r elements is C(n, r). Each subset A of S can also be 
described by specifying which elements are not in A, i.e., 
those which are  in     . Since the complement of a subset of S 
with r elements has n −	r elements,	there	are	also	C(n, n −	r)	
subsets	of	S	with	r elements.



Combinations
Example: How many ways are there to select five players 
from a 10-member tennis team to make a trip to a match at 
another school.
Solution: By Theorem 2, the number of combinations is

Example: A group of 30	people have been trained as 
astronauts to go on the first mission to Mars. How many 
ways are there to select a crew of six people to go on this 
mission?
Solution: By Theorem 2, the number of possible crews is



Section 6.5



Section Summary
� Permutations with Repetition
� Combinations with Repetition
� Permutations with Indistinguishable Objects
� Distributing Objects into Boxes



Permutations with Repetition
Theorem 1: The number of r-permutations of a set of n
objects with repetition allowed is nr.
Proof: There are n ways to select an element of the set for 
each of the r positions in the r-permutation when 
repetition is allowed. Hence, by the product rule there are 
nr r-permutations with repetition.

Example: How many strings of length r can be formed 
from the uppercase letters of the English alphabet?
Solution: The number of such strings is 26r, which is the 
number of r-permutations of a set with 26 elements. 



Combinations with Repetition
Example: How many ways are there to select five bills 
from a box containing  at least five of each of the 
following denominations: $1, $2, $5,  $10, $20, $50, 
and $100? 
Solution: Place the selected bills in the appropriate 
position of a cash box illustrated below:

continued →



Combinations with Repetition
� Some possible ways of 

placing the five bills:

� The number of ways to select five bills corresponds to the 
number of ways to arrange six bars and five stars in a row. 

� This is the number of unordered selections of 5 objects from a 
set of 11. Hence, there are

ways to choose five bills with seven types of bills.



Combinations with Repetition
Theorem 2: The number 0f r-combinations from a set with n
elements when repetition of elements is allowed is

C(n + r – 1,r) = C(n + r – 1, n –1).
Proof: Each r-combination of a set with n elements with 
repetition allowed can be represented by a list of n –1	bars and r
stars. The bars mark the n cells containing a star for each time 
the ith element of the set occurs in the combination.

The number of such lists is C(n + r – 1, r), because each list is a 
choice of the r positions to place the stars, from the total of           
n + r – 1 positions to place the stars and the bars. This is also 
equal to C(n + r – 1, n –1), which is the number of ways to place 
the n –1 bars.



Combinations with Repetition
Example: How many solutions does the equation

x1 + x2 + x3 = 11
have, where x1 , x2 and x3 are nonnegative integers?
Solution: Each solution corresponds to a way to select 
11 items from a set with three elements; x1 elements of 
type one, x2 of type two, and x3 of type three. 
By Theorem 2 it follows that there are 

solutions.



Combinations with Repetition
Example: Suppose that a cookie shop has four 
different kinds of cookies. How many different ways 
can six cookies be chosen? 
Solution: The number of ways to choose six cookies is 
the number of  6-combinations of a set with four 
elements. By Theorem 2	

is	the	number	of	ways	to	choose	six	cookies	from	the	
four	kinds.	



Summarizing the Formulas for Counting Permutations 
and Combinations with and without Repetition



Permutations with 
Indistinguishable Objects

Example: How many different strings can be made by reordering the 
letters of the word SUCCESS.
Solution: There are seven possible positions for the three Ss, two Cs, 
one U, and one E. 
� The three  Ss can be placed in C(7,3) different ways, leaving four 

positions free.
� The two  Cs can be placed in C(4,2) different ways, leaving two 

positions free. 
� The U can be placed in C(2,1) different ways, leaving one position free. 
� The E can be placed in C(1,1) way.

By the product rule, the number of different strings is:

The reasoning can be generalized to the following theorem. →



Permutations with 
Indistinguishable Objects

Theorem 3: The number of different permutations of n objects, where there are 
n1 indistinguishable objects of type  1, n2 indistinguishable objects of                 
type 2, …., and nk indistinguishable objects of type k, is:

Proof: By the product rule the total number of permutations is: 
C(n, n1 ) C(n− n1, n2 ) ∙∙∙	C(n −	n1 − n2 −	∙∙∙	−	nk, nk)   since:
� The n1	objects of type one can be placed in the n positions in C(n, n1 ) ways, 

leaving  n −	n1 positions. 
� Then the n2	objects of type two can be placed in the n − n1	positions in                    

C(n −	n1, n2 ) ways, leaving n− n1 − n2 positions. 
� Continue in this fashion, until nk objects of type k are placed in                                  

C(n −	n1 − n2 −	∙∙∙	−	nk, nk) ways. 
The product can be manipulated into the desired result as follows:



Distributing Objects into Boxes
� Many counting problems can be solved by counting 

the ways objects can be placed in boxes.
� The objects may be either different from each other 

(distinguishable) or identical (indistinguishable).
� The boxes may be labeled (distinguishable) or unlabeled 

(indistinguishable).



Distributing Objects into Boxes
� Distinguishable objects and distinguishable boxes.

� There are n!/(n1!n2! ∙∙∙nk!) ways to distribute n distinguishable 
objects into k distinguishable boxes.

� (See Exercises 47 and 48	for two different proofs.)
� Example: There are 52!/(5!5!5!5!32!) ways to distribute hands of 5

cards each to four players.
� Indistinguishable objects and distinguishable boxes.

� There are C(n + r − 1, n − 1) ways to place r indistinguishable 
objects into n distinguishable boxes.

� Proof based on one-to-one correspondence between                         
n-combinations from a set with k-elements when repetition is 
allowed and the ways to place n indistinguishable objects into k
distinguishable boxes.

� Example: There are C(8 + 10 − 1, 10) = C(17,10) = 19,448	 ways to 
place 10 indistinguishable objects into 8 distinguishable boxes.



Distributing Objects into Boxes
� Distinguishable objects and indistinguishable boxes.

� Example: There are 14 ways to put four employees into three 
indistinguishable offices (see Example 10).

� There is no simple closed formula for the number of ways to 
distribute n distinguishable objects into j indistinguishable boxes. 

� See the text for a formula involving Stirling numbers of the second 
kind.

� Indistinguishable objects and indistinguishable boxes.
� Example: There are 9 ways to pack six copies of the same book into 

four identical boxes (see Example 11).
� The number of ways of distributing n indistinguishable objects into 

k indistinguishable boxes equals pk(n), the number of ways to write 
n as the sum of at most k positive integers in increasing order. 

� No simple closed formula exists for this number.



Section 8.5



Section Summary
� The Principle of Inclusion-Exclusion
� Examples



Principle of Inclusion-Exclusion
� In Section 2.2, we developed the following formula for 

the number of elements in the union of two finite sets:

� We will generalize this formula to finite sets of any 
size. 



Two Finite Sets
Example: In a discrete mathematics class every student is a major in 
computer science or mathematics or both. The number of students 
having computer science as a  major (possibly along with mathematics) 
is 25; the number of students having mathematics as a major (possibly 
along with computer science) is 13; and the number of students 
majoring in both computer science and mathematics is 8. How many 
students are in the class?
Solution: |A∪B|	=	|A|	+	|B|	−|A∩B|	

=		25	+	13	−8	=	30



Three Finite Sets



Three Finite Sets Continued
Example: A total of 1232 students have taken a course in Spanish, 879
have taken a course in French, and 114 have taken a course in Russian. 
Further, 103	have taken courses in both Spanish and French, 23 have 
taken courses in both Spanish and Russian, and 14 have taken courses 
in both French and Russian. If 2092 students have taken a course in at 
least one of Spanish French and Russian, how many students have 
taken a course in all 3 languages. 
Solution: Let S be the set of students who have taken a course in 
Spanish, F the set of students who have taken a course in French, and R
the set of students who have taken a course in Russian. Then, we have
|S| = 1232, |F| = 879, |R| = 114, |S∩F|	=	103,	|S∩R|	=	23,	|F∩R|	=	14,	
and	|S∪F∪R|	=	23.
Using	the	equation	

|S∪F∪R|	=	|S|+ |F|+ |R| − |S∩F|	− |S∩R|	− |F∩R|	+	|S∩F∩R|,
we	obtain	2092	=	1232	+	879	+	114	−103	−23	−14	+	|S∩F∩R|.
Solving	for	|S∩F∩R|	yields	7.



Illustration of Three Finite Set 
Example



The Number of Onto Functions
Example: How many onto functions are there from a set with six elements to a set with three 
elements?
Solution:  Suppose that the elements in the codomain are b1, b2, and b3. Let P1, P2, and P3 be the 
properties that b1, b2, and b3 are not in the range of the function, respectively. The function is onto if 
none of the properties P1, P2, and P3 hold. 

By the inclusion-exclusion principle the number of onto functions from a set with six elements to a set 
with three elements is

N −	[N(P1)	+	N(P2)	+	N(P3)]		+	
[N(P1P2)	+	N(P1P3)	+	N(P2P3)]	−	N(P1P2P3)

� Here	the	total	number	of	functions	from	a	set	with	six	elements	to	one	with	three	elements	is	N	=	36.
� The	number	of	functions	that	do	not	have		in	the	range	is	N(P1)	=	26.	Similarly,	N(P2)	=		N(31)	=	26 .
� Note	that	N(P1P2)	=	N(P1P3)	=	N(P2P3)	=	1	and	N(P1P2P3)=	0.	

Hence,	the	number	of	onto	functions	from	a	set	with	six	elements	to	a	set	with	three	elements	is:

36 −	3∙	26		+	3		=	729	−	192	 +	3		=	540


